
spaghetti Documentation
Release 1.3.1

pysal developers

Nov 26, 2019

CONTENTS:

1 SPAtial GrapHs: nETworks, Topology, & Inference 1

2 Citing spaghetti 3
2.1 Installation . 3

2.1.1 Installing with conda via spaghetti-feedstock (highly recommended) 3
2.1.2 Installing with Python Package Index . 3
2.1.3 Development Version . 4

2.2 API reference . 4
2.2.1 spaghetti.Network . 4
2.2.2 spaghetti.PointPattern . 17
2.2.3 spaghetti.SimulatedPointPattern . 18
2.2.4 spaghetti . 18

2.3 References . 19

Bibliography 21

Index 23

i

ii

CHAPTER

ONE

SPATIAL GRAPHS: NETWORKS, TOPOLOGY, & INFERENCE

Spaghetti is an open-source python library for the analysis of network-based spatial data. Originating from the
network module in PySAL (Python Spatial Analysis Library), it is under active development for the inclusion of
newly proposed methods for building graph-theoretic networks and the analysis of network events.

1

http://pysal.org

spaghetti Documentation, Release 1.3.1

2 Chapter 1. SPAtial GrapHs: nETworks, Topology, & Inference

CHAPTER

TWO

CITING SPAGHETTI

If you use PySAL-spaghetti in a scientific publication, we would appreciate using the following citation:

Bibtex entry:

@misc{Gaboardi2018,
author = {Gaboardi, James D. and Laura, Jay and Rey, Sergio and Wolf, Levi

→˓John and Folch, David C. and Kang, Wei and Stephens, Philip and Schmidt,
→˓Charles},
month = {oct},
year = {2018},
title = {pysal/spaghetti},
url = {https://github.com/pysal/spaghetti},
keywords = {graph-theory,network-analysis,python,spatial-networks,topology}

}

As of version 1.3, spaghetti supports Python 3.6 and 3.7 only. Please make sure that you are operating in a Python 3
environment.

2.1 Installation

2.1.1 Installing with conda via spaghetti-feedstock (highly recommended)

To install spaghetti and all its dependencies, we recommend using the conda manager, specifically with the conda-
forge channel. This can be obtained by installing the Anaconda Distribution (a free Python distribution for data
science), or through miniconda (minimal distribution only containing Python and the conda package manager).

Using conda, spaghetti can be installed as follows:

$ conda config --set channel_priority strict
$ conda install --channel conda-forge spaghetti

2.1.2 Installing with Python Package Index

$ pip install spaghetti

or download the source distribution (.tar.gz) and decompress it to your selected destination. Open a command
shell and navigate to the decompressed folder.

$ pip install .

3

https://docs.python.org/3.6/
https://docs.python.org/3.7/
https://docs.conda.io/en/latest/
https://conda-forge.org
https://conda-forge.org
https://docs.continuum.io/anaconda/
https://docs.conda.io/en/latest/miniconda.html

spaghetti Documentation, Release 1.3.1

Warning

When installing via pip, you have to ensure that the required dependencies for spaghetti are installed on your operating
system. Details on how to install these packages are linked here. Using conda (above) avoids having to install the
dependencies separately.

Install the most current development version of spaghetti by running:

$ pip install git+https://github.com/pysal/spaghetti

2.1.3 Development Version

Install the most current development version of spaghetti by running:

$ pip install git+https://github.com/pysal/spaghetti

You can also fork the pysal/spaghetti repo and create a local clone of your fork. By making changes to your local
clone and submitting a pull request to pysal/spaghetti, you can contribute to the spaghetti development.

2.2 API reference

2.2.1 spaghetti.Network

spaghetti.Network.
extract_components(self, w)

Extract connected component information from a
libpysal.weights.weights.W object

spaghetti.Network.extractgraph(self) Using the existing network representation, create a
graph-theoretic representation by removing all vertices
with a neighbor incidence of two (non-articulation
points).

spaghetti.Network.
contiguityweights(self[, . . .])

Create a contiguity-based libpysal W object.

spaghetti.Network.
distancebandweights(self, . . .)

Create distance based weights.

spaghetti.Network.
snapobservations(self, . . .)

Snap a point pattern shapefile to network object.

spaghetti.Network.
compute_distance_to_vertices(. . .)

Given an observation on a network arc, return the dis-
tance to the two vertices that bound that end.

spaghetti.Network.
compute_snap_dist(self, . . .)

Given an observation snapped to a network arc, cal-
culate the distance from the original location to the
snapped location.

spaghetti.Network.count_per_link(self,
obs_on)

Compute the counts per arc or edge (link).

spaghetti.Network.
simulate_observations(. . .)

Generate a simulated point pattern on the network.

spaghetti.Network.
enum_links_vertex(self, v0)

Returns the arcs (links) around vertices.

Continued on next page

4 Chapter 2. Citing spaghetti

https://github.com/pysal/spaghetti#requirements
https://help.github.com/articles/fork-a-repo/
https://github.com/pysal/spaghetti
https://github.com/pysal/spaghetti

spaghetti Documentation, Release 1.3.1

Table 1 – continued from previous page
spaghetti.Network.
full_distance_matrix(self, . . .)

All vertex-to-vertex distances on a network.

spaghetti.Network.
allneighbordistances(self, . . .)

Compute either all distances between i and j in a sin-
gle point pattern or all distances between each i from a
source pattern and all j from a destination pattern.

spaghetti.Network.
nearestneighbordistances(. . .)

Compute the interpattern nearest neighbor distances or
the intrapattern nearest neighbor distances between a
source pattern and a destination pattern.

spaghetti.Network.split_arcs(self, dis-
tance)

Split all of the arcs in the network at a fixed distance.

spaghetti.Network.savenetwork(self, file-
name)

Save a network to disk as a binary file.

spaghetti.Network.loadnetwork(filename) Load a network from a binary file saved on disk.
spaghetti.Network.NetworkF(self, pointpat-
tern)

Computes a network constrained F-Function

spaghetti.Network.NetworkG(self, pointpat-
tern)

Computes a network constrained G-Function

spaghetti.Network.NetworkK(self, pointpat-
tern)

Computes a network constrained K-Function

spaghetti.Network._evaluate_napts(self,
. . .)

Evaluate one connected component in a network for
non-articulation points (napts) and return an updated set
of napts and unvisted vertices.

spaghetti.Network._extractnetwork(self) Used internally to extract a network from a polyline
shapefile of a geopandas.GeoDataFrame.

spaghetti.Network.
_newpoint_coords(self, . . .)

Used internally to compute new point coordinates dur-
ing snapping.

spaghetti.Network._round_sig(self, v) Used internally to round the vertex to a set number of
significant digits.

spaghetti.Network._snap_to_link(self,
. . .)

Used internally to snap point observations to network
arcs.

spaghetti.Network._yield_napts(self) Find all nodes with degree 2 that are not in an isolated
island ring (loop) component.

spaghetti.Network._yieldneighbor(self,
vtx, . . .)

Used internally, this method traverses a bridge arc to
find the source and destination nodes.

spaghetti.Network.extract_components

Network.extract_components(self, w, graph=False)
Extract connected component information from a libpysal.weights.weights.W object

Parameters

w [libpysal.weights.weights.W] Weights object created from the network segments (either raw
or graph-theoretic)

graph [bool] Flag for raw network [False] or graph-theoretic network True. Default is False.

spaghetti.Network.extractgraph

Network.extractgraph(self)
Using the existing network representation, create a graph-theoretic representation by removing all vertices with
a neighbor incidence of two (non-articulation points). That is, we assume these vertices are bridges between
vertices with higher or lower incidence.

2.2. API reference 5

https://libpysal.readthedocs.io/en/latest/generated/libpysal.weights.W.html#libpysal.weights.W

spaghetti Documentation, Release 1.3.1

spaghetti.Network.contiguityweights

Network.contiguityweights(self, graph=True, weightings=None)
Create a contiguity-based libpysal W object.

Parameters

graph [bool] {True, False} controls whether the W is generated using the spatial repre-
sentation or the graph representation. Default is True.

weightings [dict] dictionary of lists of weightings for each arc/edge.

Returns

W [libpysal.weights.weights.W] A pysal W Object representing the binary adjacency of the
network.

Examples

Instantiate an instance of a network.

>>> import spaghetti as spgh
>>> from libpysal import examples
>>> import esda
>>> import numpy as np
>>> ntw = spgh.Network(examples.get_path('streets.shp'))

Snap point observations to the network with attribute information.

>>> ntw.snapobservations(examples.get_path('crimes.shp'),
... 'crimes', attribute=True)

Find counts per network arc.

>>> counts = ntw.count_per_link(ntw.pointpatterns['crimes']
... .obs_to_arc, graph=False)
>>> counts[(50, 165)]
4

Create a contiguity based W object.

>>> w = ntw.contiguityweights(graph=False)

Using the W object, access to ESDA functionality is provided. First, a vector of attributes is created for all edges
with observations.

>>> w = ntw.contiguityweights(graph=False)
>>> arcs = w.neighbors.keys()
>>> y = np.zeros(len(arcs))
>>> for i, e in enumerate(arcs):
... if e in counts.keys():
... y[i] = counts[e]
>>> y[3]
3.0

Next, a standard call ot Moran is made and the result placed into res.

6 Chapter 2. Citing spaghetti

https://libpysal.readthedocs.io/en/latest/generated/libpysal.weights.W.html#libpysal.weights.W

spaghetti Documentation, Release 1.3.1

>>> res = esda.moran.Moran(y, w, permutations=99)
>>> type(res)
<class 'esda.moran.Moran'>

spaghetti.Network.distancebandweights

Network.distancebandweights(self, threshold, n_proccess=None, gen_tree=False)
Create distance based weights.

Parameters

threshold [float] Distance threshold value.

n_processes [{int, str}] (Optional) Specify the number of cores to utilize. Default is 1 core.
Use int to specify an exact number or cores. Use "all" to request all available cores.

gen_tree [bool] Rebuild shortest path with True, or skip with False.

Returns

w [libpysal.weights.weights.W] A pysal W Object representing the binary adjacency of the
network.

Examples

>>> import spaghetti as spgh
>>> streets_file = examples.get_path('streets.shp')
>>> ntw = spgh.Network(in_data=streets_file)
>>> w = ntw.distancebandweights(threshold=500)
>>> w.n
230
>>> w.histogram[-1]
(8, 3)

spaghetti.Network.snapobservations

Network.snapobservations(self, in_data, name, idvariable=None, attribute=None)
Snap a point pattern shapefile to network object. The point pattern is stored in the network.
pointpattern['key'] attribute of the network object.

Parameters

in_data [{geopandas.GeoDataFrame, str}] The input geographic data. Either (1) a path to a
shapefile (str); or (2) a geopandas.GeoDataFrame.

name [str] Name to be assigned to the point dataset.

idvariable [str] Column name to be used as ID variable.

attribute [bool] Defines whether attributes should be extracted. True for attribute extraction.
False for no attribute extraction.

2.2. API reference 7

https://libpysal.readthedocs.io/en/latest/generated/libpysal.weights.W.html#libpysal.weights.W

spaghetti Documentation, Release 1.3.1

Examples

>>> import spaghetti as spgh
>>> streets_file = examples.get_path('streets.shp')
>>> ntw = spgh.Network(in_data=streets_file)
>>> pt_str = 'crimes'
>>> in_data = examples.get_path('{}.shp'.format(pt_str))
>>> ntw.snapobservations(in_data, pt_str, attribute=True)
>>> ntw.pointpatterns[pt_str].npoints
287

spaghetti.Network.compute_distance_to_vertices

Network.compute_distance_to_vertices(self, x, y, arc)
Given an observation on a network arc, return the distance to the two vertices that bound that end.

Parameters

x [float] x-coordinate of the snapped point.

y [float] y-coordinate of the snapped point.

arc [tuple] (vtx0, vtx1) representation of the network arc.

Returns

d1 [float] The distance to vtx0. Always the vertex with the lesser id.

d2 [float] The distance to vtx1. Always the vertex with the greater id.

spaghetti.Network.compute_snap_dist

Network.compute_snap_dist(self, pattern, idx)
Given an observation snapped to a network arc, calculate the distance from the original location to the snapped
location.

Parameters

pattern [spaghetti.network.PointPattern] point pattern object

idx [int] point id

Returns

dist [float] euclidean distance from original location to snapped location.

spaghetti.Network.count_per_link

Network.count_per_link(self, obs_on, graph=True)
Compute the counts per arc or edge (link).

Parameters

obs_on_network [dict] Dictionary of observations on the network. Either
{(link):{pt_id:(coords)}} or {link:[(coord),(coord),(coord)]}

Returns

counts [dict] {(link):count}

8 Chapter 2. Citing spaghetti

spaghetti Documentation, Release 1.3.1

Examples

Note that this passes the obs_to_arc or obs_to_edge attribute of a point pattern snapped to the network.

>>> import spaghetti as spgh
>>> ntw = spgh.Network(examples.get_path('streets.shp'))
>>> ntw.snapobservations(examples.get_path('crimes.shp'),
... 'crimes',
... attribute=True)

>>> counts = ntw.count_per_link(ntw.pointpatterns['crimes']
... .obs_to_arc, graph=False)
>>> counts[(140, 142)]
10

>>> s = sum([v for v in list(counts.values())])
>>> s
287

spaghetti.Network.simulate_observations

Network.simulate_observations(self, count, distribution=’uniform’)
Generate a simulated point pattern on the network.

Parameters

count [int] The number of points to create or mean of the distribution if not ‘uniform’.

distribution [str] {'uniform', 'poisson'} distribution of random points. If
"poisson", the distribution is calculated from half the total network length.

Returns

random_pts [dict] Keys are the edge tuple. Values are lists of new point coordinates.

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(examples.get_path('streets.shp'))
>>> ntw.snapobservations(examples.get_path('crimes.shp'),
... 'crimes',
... attribute=True)

>>> npts = ntw.pointpatterns['crimes'].npoints
>>> sim = ntw.simulate_observations(npts)
>>> isinstance(sim, spgh.network.SimulatedPointPattern)
True

spaghetti.Network.enum_links_vertex

Network.enum_links_vertex(self, v0)
Returns the arcs (links) around vertices.

Parameters

2.2. API reference 9

spaghetti Documentation, Release 1.3.1

v0 [int] vertex id

Returns

links [list] List of tuple arcs adjacent to the vertex.

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(examples.get_path('streets.shp'))
>>> ntw.enum_links_vertex(24)
[(24, 48), (24, 25), (24, 26)]

spaghetti.Network.full_distance_matrix

Network.full_distance_matrix(self, n_processes, gen_tree=False)
All vertex-to-vertex distances on a network. This function is called from within
allneighbordistances(), nearestneighbordistances(), and distancebandweights().

Parameters

n_processes [int] Cpu cores for multiprocessing.

gen_tree [bool] Rebuild shortest path True, or skip False.

Notes

Based on [Dij59].

spaghetti.Network.allneighbordistances

Network.allneighbordistances(self, sourcepattern, destpattern=None, fill_diagonal=None,
n_processes=None, gen_tree=False, snap_dist=False)

Compute either all distances between i and j in a single point pattern or all distances between each i from a
source pattern and all j from a destination pattern.

Parameters

sourcepattern [{str, spaghetti.network.PointPattern}] The key of a point pattern snapped to the
network OR the full spaghetti.network.PointPattern object.

destpattern [str] (Optional) The key of a point pattern snapped to the network OR the full
spaghetti.network.PointPattern object.

fill_diagonal [{float, int}] (Optional) Fill the diagonal of the cost matrix. Default is None
and will populate the diagonal with numpy.nan. Do not declare a destpattern for a
custom fill_diagonal.

n_processes [{int, str}] (Optional) Specify the number of cores to utilize. Default is 1 core.
Use int to specify an exact number or cores. Use "all" to request all available cores.

gen_tree [bool] Rebuild shortest path True, or skip False.

snap_dist [bool] Flag as True to include the distance from the original location to the snapped
location along the network. Default is False.

Returns

10 Chapter 2. Citing spaghetti

spaghetti Documentation, Release 1.3.1

nearest [numpy.ndarray] An array of shape (n,n) storing distances between all points.

tree_nearest [dict] Nearest network node to point pattern vertex shortest path lookup. The
values of the dictionary are a tuple of the nearest source vertex and the near destination
vertex to query the lookup tree. If two observations are snapped to the same network arc a
flag of -.1 is set for both the source and destination network vertex indicating the same arc
is used while also raising an IndexError when rebuilding the path.

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(examples.get_path('streets.shp'))
>>> ntw.snapobservations(examples.get_path('crimes.shp'),
... 'crimes',
... attribute=True)

>>> s2s_dist = ntw.allneighbordistances('crimes')
>>> s2s_dist[0,0], s2s_dist[1,0]
(nan, 3105.189475447081)

>>> ntw.snapobservations(examples.get_path('schools.shp'),
... 'schools',
... attribute=False)

>>> s2d_dist = ntw.allneighbordistances('crimes',
... destpattern='schools')
>>> s2d_dist[0,0], s2d_dist[1,0]
(4520.72353741989, 6340.422971967315)

>>> s2d_dist, tree = ntw.allneighbordistances('schools',
... gen_tree=True)
>>> tree[(6, 7)]
(173, 64)

spaghetti.Network.nearestneighbordistances

Network.nearestneighbordistances(self, sourcepattern, destpattern=None, n_processes=None,
gen_tree=False, all_dists=None, snap_dist=False,
keep_zero_dist=True)

Compute the interpattern nearest neighbor distances or the intrapattern nearest neighbor distances between a
source pattern and a destination pattern.

Parameters

sourcepattern [str] The key of a point pattern snapped to the network.

destpattern [str] (Optional) The key of a point pattern snapped to the network.

n_processes [{int, str}] (Optional) Specify the number of cores to utilize. Default is 1 core.
Use int to specify an exact number or cores. Use "all" to request all available cores.

gen_tree [bool] Rebuild shortest path True, or skip False.

all_dists [numpy.ndarray] An array of shape (n,n) storing distances between all points.

snap_dist [bool] Flag as True to include the distance from the original location to the snapped
location along the network. Default is False.

2.2. API reference 11

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html

spaghetti Documentation, Release 1.3.1

keep_zero_dist [bool] Include zero values in minimum distance True or exclude False. De-
fault is True. If the source pattern is the same as the destination pattern the diagonal is
filled with numpy.nan.

Returns

nearest [dict] key is source point id, value is tuple of list containing nearest destination point
ids and distance.

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(examples.get_path('streets.shp'))
>>> ntw.snapobservations(examples.get_path('crimes.shp'),
... 'crimes')
>>> nn = ntw.nearestneighbordistances('crimes',
... keep_zero_dist=True)
>>> nn[11], nn[18]
(([18, 19], 165.33982412719126), ([19], 0.0))

>>> nn = ntw.nearestneighbordistances('crimes',
... keep_zero_dist=False)
>>> nn[11], nn[18]
(([18, 19], 165.33982412719126), ([11], 165.33982412719126))

spaghetti.Network.split_arcs

Network.split_arcs(self, distance)
Split all of the arcs in the network at a fixed distance.

Parameters

distance [float] The distance at which arcs are split.

Returns

split_network [spaghetti.Network] newly instantiated spaghetti.Network object.

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(examples.get_path('streets.shp'))
>>> n200 = ntw.split_arcs(200.0)
>>> len(n200.arcs)
688

spaghetti.Network.savenetwork

Network.savenetwork(self, filename)
Save a network to disk as a binary file.

Parameters

filename [str] The filename where the network should be saved. This should be a full path or it
will be save in the current directory.

12 Chapter 2. Citing spaghetti

spaghetti Documentation, Release 1.3.1

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(examples.get_path('streets.shp'))
>>> ntw.savenetwork('mynetwork.pkl')

spaghetti.Network.loadnetwork

static Network.loadnetwork(filename)
Load a network from a binary file saved on disk.

Parameters

filename [str] The filename where the network should be saved.

Returns

self [spaghetti.Network] spaghetti Network object

spaghetti.Network.NetworkF

Network.NetworkF(self, pointpattern, nsteps=10, permutations=99, threshold=0.2, distribu-
tion=’uniform’, lowerbound=None, upperbound=None)

Computes a network constrained F-Function

Parameters

pointpattern [spaghetti.network.PointPattern] A spaghetti point pattern object.

nsteps [int] The number of steps at which the count of the nearest neighbors is computed.

permutations [int] The number of permutations to perform. Default 99.

threshold [float] The level at which significance is computed. (0.5 would be 97.5% and 2.5%).

distribution [str] The distribution from which random points are sampled. Either "uniform"
or "poisson".

lowerbound [float] The lower bound at which the F-function is computed. Default 0.

upperbound [float] The upper bound at which the F-function is computed. Defaults to the
maximum observed nearest neighbor distance.

Returns

NetworkF [spaghetti.analysis.NetworkF] A network F class instance.

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(in_data=examples.get_path('streets.shp'))
>>> pt_str = 'crimes'
>>> in_data = examples.get_path('{}.shp'.format(pt_str))
>>> ntw.snapobservations(in_data, pt_str, attribute=True)
>>> crimes = ntw.pointpatterns['crimes']
>>> sim = ntw.simulate_observations(crimes.npoints)
>>> fres = ntw.NetworkF(crimes, permutations=5, nsteps=10)
>>> fres.lowerenvelope.shape[0]
10

2.2. API reference 13

spaghetti Documentation, Release 1.3.1

spaghetti.Network.NetworkG

Network.NetworkG(self, pointpattern, nsteps=10, permutations=99, threshold=0.5, distribu-
tion=’uniform’, lowerbound=None, upperbound=None)

Computes a network constrained G-Function

Parameters

pointpattern [spaghetti.network.PointPattern] A spaghetti point pattern object.

nsteps [int] The number of steps at which the count of the nearest neighbors is computed.

permutations [int] The number of permutations to perform. Default 99.

threshold [float] The level at which significance is computed. (0.5 would be 97.5% and 2.5%).

distribution [str] The distribution from which random points are sampled Either "uniform"
or "poisson".

lowerbound [float] The lower bound at which the G-function is computed. Default 0.

upperbound [float] The upper bound at which the G-function is computed. Defaults to the
maximum observed nearest neighbor distance.

Returns

NetworkG [spaghetti.analysis.NetworkG] A network G class instance.

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(in_data=examples.get_path('streets.shp'))
>>> pt_str = 'crimes'
>>> in_data = examples.get_path('{}.shp'.format(pt_str))
>>> ntw.snapobservations(in_data, pt_str, attribute=True)
>>> crimes = ntw.pointpatterns['crimes']
>>> sim = ntw.simulate_observations(crimes.npoints)
>>> gres = ntw.NetworkG(crimes, permutations=5, nsteps=10)
>>> gres.lowerenvelope.shape[0]
10

spaghetti.Network.NetworkK

Network.NetworkK(self, pointpattern, nsteps=10, permutations=99, threshold=0.5, distribu-
tion=’uniform’, lowerbound=None, upperbound=None)

Computes a network constrained K-Function

Parameters

pointpattern [spaghetti.network.PointPattern] A spaghetti point pattern object.

nsteps [int] The number of steps at which the count of the nearest neighbors is computed.

permutations [int] The number of permutations to perform. Default is 99.

threshold [float] The level at which significance is computed. (0.5 would be 97.5% and 2.5%).

distribution [str] The distribution from which random points are sampled Either "uniform"
or "poisson".

lowerbound [float] The lower bound at which the K-function is computed. Default is 0.

14 Chapter 2. Citing spaghetti

spaghetti Documentation, Release 1.3.1

upperbound [float] The upper bound at which the K-function is computed. Defaults to the
maximum observed nearest neighbor distance.

Returns

NetworkK [spaghetti.analysis.NetworkK] A network K class instance.

Notes

Based on [OY01].

Examples

>>> import spaghetti as spgh
>>> ntw = spgh.Network(in_data=examples.get_path('streets.shp'))
>>> pt_str = 'crimes'
>>> in_data = examples.get_path('{}.shp'.format(pt_str))
>>> ntw.snapobservations(in_data, pt_str, attribute=True)
>>> crimes = ntw.pointpatterns['crimes']
>>> sim = ntw.simulate_observations(crimes.npoints)
>>> kres = ntw.NetworkK(crimes, permutations=5, nsteps=10)
>>> kres.lowerenvelope.shape[0]
10

spaghetti.Network._evaluate_napts

Network._evaluate_napts(self, napts, unvisited, component_id, ring)
Evaluate one connected component in a network for non-articulation points (napts) and return an updated set of
napts and unvisted vertices.

Parameters

napts [set] Non-articulation points (napts) in the network. The ‘napts’ here do not include those
within an isolated loop island.

unvisited [set] Vertices left to evaluate in the network.

component_id [int] ID for the network connected component for the current iteration of the
algorithm.

ring [bool] Network component is isolated island loop True or not False.

Returns

napts [set] Updated ‘napts’ object.

unvisited [set] Updated ‘napts’ object.

spaghetti.Network._extractnetwork

Network._extractnetwork(self)
Used internally to extract a network from a polyline shapefile of a geopandas.GeoDataFrame.

2.2. API reference 15

spaghetti Documentation, Release 1.3.1

spaghetti.Network._newpoint_coords

Network._newpoint_coords(self, arc, distance)
Used internally to compute new point coordinates during snapping.

spaghetti.Network._round_sig

Network._round_sig(self, v)
Used internally to round the vertex to a set number of significant digits. If sig is set to 4, then the following are
some possible results for a coordinate are as follows. (1) 0.0xxxx, (2) 0.xxxx, (3) x.xxx, (4) xx.xx, (5) xxx.x,
(6) xxxx.0, (7) xxxx0.0

Parameters

v [tuple] X,Y coordinate of the vertex

spaghetti.Network._snap_to_link

Network._snap_to_link(self, pointpattern)
Used internally to snap point observations to network arcs.

Parameters

pointpattern [spaghetti.network.PointPattern] point pattern object

Returns

obs_to_arc [dict] Dictionary with arcs as keys and lists of points as values.

arc_to_obs [dict] Dictionary with point ids as keys and arc tuples as values.

dist_to_vertex [dict] Dictionary with point ids as keys and values as dicts with keys for vertex
ids and values as distances from point to vertex.

dist_snapped [dict] Dictionary with point ids as keys and distance from point to the network
arc which it is snapped.

spaghetti.Network._yield_napts

Network._yield_napts(self)
Find all nodes with degree 2 that are not in an isolated island ring (loop) component. These are non-articulation
points on the graph representation.

Returns

napts [list] non-articulation points on a graph representation

spaghetti.Network._yieldneighbor

Network._yieldneighbor(self, vtx, arc_vertices, bridge)
Used internally, this method traverses a bridge arc to find the source and destination nodes.

Parameters

vtx [int] vertex id

arc_vertices [list] All non-articulation points in the network. These are referred to as degree-2
vertices.

16 Chapter 2. Citing spaghetti

spaghetti Documentation, Release 1.3.1

bridge [list] Inital bridge list containing only vtx.

Returns

nodes [list] Vertices to keep (articulation points). These elements are referred to as nodes.

2.2.2 spaghetti.PointPattern

spaghetti.PointPattern([in_data, . . .]) A stub point pattern class used to store a point pattern.

spaghetti.PointPattern

class spaghetti.PointPattern(in_data=None, idvariable=None, attribute=False)
A stub point pattern class used to store a point pattern. This class is monkey patched with network specific
attributes when the points are snapped to a network. In the future this class may be replaced with a generic point
pattern class.

Parameters

in_data [{geopandas.GeoDataFrame, str}] The input geographic data. Either (1) a path to a
shapefile str; or (2) a geopandas.GeoDataFrame.

idvariable [str] Field in the shapefile to use as an id variable.

attribute [bool] A flag to indicate whether all attributes are tagged to this class (True) or
excluded (False). Default is False.

Attributes

points [dict] Keys are the point ids (int). Values are the x,y coordinates (tuple).

npoints [int] The number of points.

obs_to_arc [dict] Keys are arc ids (tuple). Values are snapped point information (dict).
Within the snapped point information (dict) keys are observation ids (int), and values
are snapped coordinates.

obs_to_vertex [list] List of incident network vertices to snapped observation points converted
from a default_dict. Originally in the form of paired left/right nearest network ver-
tices {netvtx1: obs_id1, netvtx2: obs_id1, netvtx1: obs_id2. . . netvtx1: obs_idn}, then
simplified to a list in the form [netvtx1, netvtx2, netvtx1, netvtx2, . . .].

dist_to_vertex [dict] Keys are observations ids (int). Values are distance lookup (dict).
Within distance lookup (dict) keys are the two incident vertices of the arc and values are
distance to each of those arcs.

snapped_coordinates [dict] Keys are the point ids (int). Values are the snapped x,y coordi-
nates (tuple).

snap_dist [bool] Flag as True to include the distance from the original location to the snapped
location along the network. Default is False.

__init__(self, in_data=None, idvariable=None, attribute=False)
Initialize self. See help(type(self)) for accurate signature.

Methods

2.2. API reference 17

http://geopandas.org/data_structures.html#geodataframe

spaghetti Documentation, Release 1.3.1

__init__(self[, in_data, idvariable, attribute]) Initialize self.

2.2.3 spaghetti.SimulatedPointPattern

spaghetti.SimulatedPointPattern() Struct style class to mirror the PointPattern class.

spaghetti.SimulatedPointPattern

class spaghetti.SimulatedPointPattern
Struct style class to mirror the PointPattern class. If the PointPattern class has methods, it might
make sense to make this a child of that class. This class is not intended to be used by the external user.

Attributes

npoints [int] The number of points.

obs_to_arc [dict] Keys are arc ids (tuple). Values are snapped point information (dict).
Within the snapped point information (dict) keys are observation ids (int), and values
are snapped coordinates.

obs_to_vertex [list] List of incident network vertices to snapped observation points converted
from a default_dict. Originally in the form of paired left/right nearest network ver-
tices {netvtx1: obs_id1, netvtx2: obs_id1, netvtx1: obs_id2. . . netvtx1: obs_idn}, then
simplified to a list in the form [netvtx1, netvtx2, netvtx1, netvtx2, . . .].

dist_to_vertex [dict] Keys are observations ids (int). Values are distance lookup (dict).
Within distance lookup (dict) keys are the two incident vertices of the arc and values are
distance to each of those arcs.

snapped_coordinates [dict] Keys are the point ids (int). Values are the snapped x,y coordi-
nates (tuple).

snap_dist [bool] Flag as True to include the distance from the original location to the snapped
location along the network. Default is False.

__init__(self)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(self) Initialize self.

2.2.4 spaghetti

spaghetti.element_as_gdf(net[, vertices, . . .]) Return a geopandas.GeoDataFrame of network ele-
ments.This can be (a) the vertices of a network; (b) the
arcs of a network; (c) both the vertices and arcs of the
network; (d) raw point pattern associated with the net-
work; or (e) snapped point pattern of (d)..

18 Chapter 2. Citing spaghetti

http://geopandas.org/data_structures.html#geodataframe

spaghetti Documentation, Release 1.3.1

spaghetti.element_as_gdf

spaghetti.element_as_gdf(net, vertices=False, arcs=False, pp_name=None, snapped=False,
id_col=’id’, geom_col=’geometry’)

Return a geopandas.GeoDataFrame of network elements. This can be (a) the vertices of a network; (b) the arcs
of a network; (c) both the vertices and arcs of the network; (d) raw point pattern associated with the network; or
(e) snapped point pattern of (d).

Parameters

net [spaghetti.Network] network object

vertices [bool] Extract the network vertices. Default is False.

arcs [bool] Extract the network arcs. Default is False.

pp_name [str] Name of the network PointPattern to extract. Default is None.

snapped [bool] If extracting a network PointPattern, set to True for snapped point loca-
tions along the network. Default is False.

id_col [str] GeoDataFrame column name for IDs. Default is 'id'.

geom_col [str] GeoDataFrame column name for geometry. Default is 'geometry'.

Returns

points [geopandas.GeoDataFrame] Network point elements (either vertices or
PointPattern points) as a geopandas.GeoDataFrame of shapely.Point ob-
jects with an id column and geometry column.

lines [geopandas.GeoDataFrame] Network arc elements as a geopandas.GeoDataFrame
of shapely.LineString objects with an id column and geometry column.

Raises

KeyError In order to extract a PointPattern it must already be a part of the spaghetti.
Network object. This exception is raised when a PointPattern is being extracted that
does not exist within the spaghetti.Network object.

Notes

This function requires geopandas.

2.3 References

2.3. References 19

http://geopandas.org/data_structures.html#geodataframe
http://geopandas.org

spaghetti Documentation, Release 1.3.1

20 Chapter 2. Citing spaghetti

BIBLIOGRAPHY

[Dij59] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1(1):269–271,
1959. doi:10.1007/BF01386390.

[OY01] Atsuyuki Okabe and Ikuho Yamada. The K-Function Method on a Network and Its Computational Imple-
mentation. Geographical Analysis, 33(3):271–290, 2001.

21

https://doi.org/10.1007/BF01386390

spaghetti Documentation, Release 1.3.1

22 Bibliography

INDEX

Symbols
__init__() (spaghetti.PointPattern method), 17
__init__() (spaghetti.SimulatedPointPattern

method), 18
_evaluate_napts() (spaghetti.Network method), 15
_extractnetwork() (spaghetti.Network method), 15
_newpoint_coords() (spaghetti.Network method),

16
_round_sig() (spaghetti.Network method), 16
_snap_to_link() (spaghetti.Network method), 16
_yield_napts() (spaghetti.Network method), 16
_yieldneighbor() (spaghetti.Network method), 16

A
allneighbordistances() (spaghetti.Network

method), 10

C
compute_distance_to_vertices()

(spaghetti.Network method), 8
compute_snap_dist() (spaghetti.Network method),

8
contiguityweights() (spaghetti.Network method),

6
count_per_link() (spaghetti.Network method), 8

D
distancebandweights() (spaghetti.Network

method), 7

E
element_as_gdf() (in module spaghetti), 19
enum_links_vertex() (spaghetti.Network method),

9
extract_components() (spaghetti.Network

method), 5
extractgraph() (spaghetti.Network method), 5

F
full_distance_matrix() (spaghetti.Network

method), 10

L
loadnetwork() (spaghetti.Network static method), 13

N
nearestneighbordistances()

(spaghetti.Network method), 11
NetworkF() (spaghetti.Network method), 13
NetworkG() (spaghetti.Network method), 14
NetworkK() (spaghetti.Network method), 14

P
PointPattern (class in spaghetti), 17

S
savenetwork() (spaghetti.Network method), 12
simulate_observations() (spaghetti.Network

method), 9
SimulatedPointPattern (class in spaghetti), 18
snapobservations() (spaghetti.Network method),

7
split_arcs() (spaghetti.Network method), 12

23

	SPAtial GrapHs: nETworks, Topology, & Inference
	Citing spaghetti
	Installation
	Installing with conda via spaghetti-feedstock (highly recommended)
	Installing with Python Package Index
	Development Version

	API reference
	spaghetti.Network
	spaghetti.PointPattern
	spaghetti.SimulatedPointPattern
	spaghetti

	References

	Bibliography
	Index

